458 research outputs found

    Blood and sputum biomarkers in COPD and asthma: a review

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and asthma are lung inflammatory diseases that represent major public health problems. The primary, and often unique, method to evaluate lung function is spirometry, which reflects disease severity rather than disease activity. Moreover, its measurements strictly depend on patient's compliance, physician's expertise and data interpretation. The limitations of clinical history and pulmonary function tests have encouraged focusing on new possible tracers of diseases. The increase of the inflammatory response in the lungs represents an early pathological event, so biological markers related to inflammation may play key roles in earlier diagnosis, evaluation of functional impairment and prognosis. Biomarkers are measurable indicators associated with the presence and/or severity of a biological or pathogenic process, which may predict functional impairment, prognosis and response to therapy. The traditional approach based on invasive techniques (bronchoalveolar lavage and biopsies) may be replaced, at least in part, by using less invasive methods to collect specimens (sputum and blood), in which biomarkers could be measured. Proteomics, by the association between different protein profiles and pathogenic processes, is gaining an important role in pulmonary medicine allowing a more precise discrimination between patients with different outcomes and response to therapy. The aim of this review was to evaluate the use of biomarkers of airway inflammation in the context of both research and clinical practice

    Effect of task failure on intermuscular coherence measures in synergistic muscles

    Get PDF
    The term "task failure" describes the point when a person is not able to maintain the level of force required by a task. As task failure approaches, the corticospinal command to the muscles increases to maintain the required level of force in the face of a decreased mechanical efficacy. Nevertheless, most motor tasks require the synergistic recruitment of several muscles. How this recruitment is affected by approaching task failure is still not clear. The increase in the corticospinal drive could be due to an increase in synergistic recruitment or to overlapping commands sent to the muscles individually. Herein, we investigated these possibilities by combining intermuscular coherence and synergy analysis on signals recorded from three muscles of the quadriceps during dynamic leg extension tasks. We employed muscle synergy analysis to investigate changes in the coactivation of the muscles. Three different measures of coherence were used. Pooled coherence was used to estimate the command synchronous to all three muscles, pairwise coherence the command shared across muscle pairs and residual coherence the command peculiar to each couple of muscles. Our analysis highlights an overall decrease in synergistic command at task failure and an intensification of the contribution of the nonsynergistic shared command

    Rapid detection of copy number variations and point mutations in BRCA1/2 genes using a single workflow by ion semiconductor sequencing pipeline

    Get PDF
    Molecular analysis of BRCA1 (MIM# 604370) and BRCA2 (MIM #600185) genes is essential for familial breast and ovarian cancer prevention and treatment. An efficient, rapid, cost-effective accurate strategy for the detection of pathogenic variants is crucial. Mutations detection of BRCA1/2 genes includes screening for single nucleotide variants (SNVs), small insertions or deletions (indels), and Copy Number Variations (CNVs). Sanger sequencing is unable to identify CNVs and therefore Multiplex Ligation Probe amplification (MLPA) or Multiplex Amplicon Quantification (MAQ) is used to complete the BRCA1/2 genes analysis. The rapid evolution of Next Generation Sequencing (NGS) technologies allows the search for point mutations and CNVs with a single platform and workflow. In this study we test the possibilities of NGS technology to simultaneously detect point mutations and CNVs in BRCA1/2 genes, using the OncomineTM BRCA Research Assay on Personal Genome Machine (PGM) Platform with Ion Reporter Software for sequencing data analysis (Thermo Fisher Scientific). Comparison between the NGS-CNVs, MLPA and MAQ results shows how the NGS approach is the most complete and fast method for the simultaneous detection of all BRCA mutations, avoiding the usual time consuming multistep approach in the routine diagnostic testing of hereditary breast and ovarian cancers

    The Effect of Damage Functions on Urban Flood Damage Appraisal

    Get PDF
    Flooding damage appraisal can been obtained by interpolating real damage data caused by historical flooding events or accounting the effects of a flood in terms of the depreciation of assets. Most often, the expected damage is evaluated by means of damage functions describing the relationship occurring between the damage and hydraulic characteristics of flood. The present paper aims to evaluate the uncertainty linked to the choice of the depth-damage function adopted in the flood damage analysis. Several possible depth-damage function formulations were selected in literature and applied to historical flooding events monitored in the "Centro Storico" catchment in Palermo (Italy). (C) 2013 The Authors. Published by Elsevier Ltd

    Analysis of the impact of intermittent distribution by modelling the network-filling process

    Get PDF
    In many countries, users acquire private tanks to reduce their vulnerability to water scarcity. In such conditions, water managers often apply intermittent distribution in order to reduce the water volumes supplied to the users. This practice modifies the hydraulic behaviour of the network and determines competition among users that need to collect enough water resource for their uses. Intermittent distribution is thus responsible for the inequality that can occur among users: those located in advantaged positions of the network are able to obtain water resources soon after the service period begins, while others have to wait much longer, after the network is full. This paper analyses the inequalities that take part when intermittent distribution is applied in water scarcity scenarios. Considering the complexity of the process, the analysis was performed by means of an unsteady numerical model. The model was applied to a real case study which provided interesting insights into the network filling process, helping to highlight the advantaged and disadvantaged areas of the network in different water scarcity scenarios

    Definition of Water Meter Substitution Plans based on a Composite Indicator

    Get PDF
    This paper presents a water meter substitution plan based on a composite "Replacement indicator" which was defined and compared with common substitution strategies based on meter age and on run-to-fail approaches. The methodology was applied to one of the 17 sub-networks in which the Palermo city water distribution network (Italy) is divided. The analysis was carried out considering a substitution budget limitation and the results showed that the use of "Replacement indicator" outperform the classical substitution strategies based on meter age because it takes into account some other variables that may affect meter precision and wearing. (C) 2013 The Authors. Published by Elsevier Ltd
    corecore